Global Sources
EE Times-India
Stay in touch with EE Times India
 
EE Times-India > Sensors/MEMS
 
 
Sensors/MEMS  

NXP develops 80GHz CMOS radar chip

Posted: 11 Mar 2015     Print Version  Bookmark and Share

Keywords:ADAS  CMOS  radar  Dolphin 

The automotive industry is looking for both solutions as a package. Freescale is doing exactly that.

Just last week, Freescale unveiled at the Mobile World Congress its S32V microprocessor.

Inside the automotive vision SoC is CogniVue's second-generation APEX Image Cognition Processing technology. The SoC additionally supports the fusion of vision data captured by the S32V device. Fused in are other data streams, including radar, LiDAR and ultrasonic information to enhance resolution and image recognition, Freescale said.

Meanwhile, Freescale has its own radar solution. Its MR2001 is a high-performance 77GHz radar transceiver chipset "scalable for multi-channel operation enabling a single radar platform with electronic beam steering and wide field-of-view to support [multi-range] applications across automotive safety, communications infrastructure and industrial systems," according to Freescale.

In vision, Freescale and NXP have solutions using different vision algorithms experts. Freescale works with CogniVue and NXP is partnered with Mobileye.

In radar technologies, the merged entity is likely to profit from each other's diverging technology and market experience (Freescale's SiGe-based radars; NXP's nascent efforts for CMOS radar front-end transmitter chip).

Work has only begun

NXP's Reger acknowledges that the work has only begun on a single-chip all CMOS radar transceiver in future.

Lars Reger

Lars Reger, VP, strategy, new business and R&D for automotive at NXP

Aside from integrating the radar front-end chip with MCUs to make a complete system-level solution for ADAS applications, antenna developments also need to come along to shrink the module.

Obviously, CMOS is lower cost, better integrates digital circuitry and benefits from technology scaling, compared to a SiGe bipolar process, but some say that's not enough. The maximum available gain at millimetre-wave frequencies is known to be lower for CMOS, and its low supply voltage reportedly limits output power.

NXP's Reger, however, noted that the team is working on "the best radar illumination," to make more powerful, accurate and high-performance millimetre-wave sensors that work for various range applications including mid and short-range.

The team is also working on a new scheme to connect multiple CMOS radar front-end chips via automotive Ethernet, so that they work as one.

NXP's Dophin operates on 80GHz band, "plus or minus a few GHz," making it work between 77GHz and 81GHz, according to Reger.

- Junko Yoshida
  EE Times


 First Page Previous Page 1 • 2 • 3



Comment on "NXP develops 80GHz CMOS radar chip"
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top