Global Sources
EE Times-India
Stay in touch with EE Times India
 
EE Times-India > Power/Alternative Energy
 
 
Power/Alternative Energy  

Supercapacitor electrode promises faster battery charging

Posted: 11 Mar 2015     Print Version  Bookmark and Share

Keywords:supercapacitor  graphene  electric vehicles  electrode 

Supercapacitors are known for their ultra-high charge and discharge rate, excellent stability, long cycle life and high power density. They have the potential to enable fast charging in electric vehicles and portable electronics.

Offsetting this promise is the fact that, while supercapacitors have the potential to charge faster and last longer than conventional batteries, they also need to be much larger in size and mass in order to hold the same electric energy as batteries. Thus, many scientists are working to develop green, lightweight, low-cost supercapacitors with high performance.

Now two researchers from the S.N. Bose National Centre for Basic Sciences, India, have developed a novel supercapacitor electrode based on a hybrid nanostructure made from a hybrid nickel oxide-iron oxide exterior shell and a conductive iron-nickel core.

In a paper published this week in the Journal of Applied Physics, from AIP Publishing, the researchers reported the fabrication technique of the hybrid nanostructure electrode. They also demonstrated its superior performance compared to existing, non-hybrid supercapacitor electrodes. Since nickel oxide and iron oxide are environmental friendly and cheap materials that are widely available in nature, the novel electrode promises green and low-cost supercapacitors in the future.

"This hybrid electrode shows the superior electrochemical performance in terms of high capacitance [the ability to store electrical charge] of nearly 1415F per gram, high current density of 2.5A per gram, low resistance and high power density," said Ashutosh K. Singh, the primary researcher at the Department of Condensed Matter Physics and Material Sciences at the S.N. Bose National Centre for Basic Sciences. "It also has a long-term cycling stability; in other words, the electrode could retain nearly 95% of initial capacitance after cycling or charging and discharging 3,000 times."

The promise of supercapacitors

Supercapacitors are electronic devices used to store an extremely large amount of electrical charges. They are also known as electrochemical capacitors, and they promise high power density, high rate capability, superb cycle stability and high energy density.

Supercapacitor

In energy storage devices, storing an electrical charge is called "energy density," a distinction from "power density," which refers to how quickly energy is delivered. Conventional capacitors have high power density but low energy density, which means they can quickly charge and discharge and release a burst of electric power in a short time, but they can't hold a large amount of electric charges.

Conventional batteries, on the other hand, are the opposite. They have high energy density or can store a lot of electric energy, but can take hours to charge and discharge. Supercapacitors are a bridge between conventional capacitors and batteries, combining the advantageous properties of high power, high energy density and low internal resistance, which may replace batteries as a fast, reliable and potentially safer power source for electric and portable electronic devices in future, said Singh.

In supercapacitors, high capacitance, or the ability to store an electrical charge, is critical to achieve higher energy density. Meanwhile, to achieve a higher power density, it is critical to have a large electrochemically accessible surface area, high electrical conductivity and short ion diffusion pathways. Nanostructured active materials provide a means to these ends.


1 • 2 Next Page Last Page



Comment on "Supercapacitor electrode promises fa..."
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top