Global Sources
EE Times-India
Stay in touch with EE Times India
 
EE Times-India > Power/Alternative Energy
 
 
Power/Alternative Energy  

'Ideal' material absorbs full spectrum of solar radiation

Posted: 30 Sep 2014     Print Version  Bookmark and Share

Keywords:metallic dielectric photonic crystal  STPV  photovoltaic  solar energy 

Tuning a material's spectrum of absorption precisely is the key to creating a material that is ideal for converting solar energy to heat. It must be able to absorb virtually all wavelengths of light that reach the Earth's surface from the sun, but not much of the rest of the spectrum because that would increase the energy that is reradiated by the material, and thus lost to the conversion process.

Now researchers at MIT say they have accomplished the development of a material that comes very close to the "ideal" for solar absorption. The material is a two-dimensional metallic dielectric photonic crystal, and has the additional benefits of absorbing sunlight from a wide range of angles and withstanding extremely high temperatures. Perhaps most importantly, the material can also be made cheaply at large scales.

The creation of this material is described in a paper published in the journal Advanced Materials, co-authored by MIT postdoc Jeffrey Chou, professors Marin Soljacic, Nicholas Fang, Evelyn Wang and Sang-Gook Kim, and five others.

The material works as part of a solar-thermophotovoltaic (STPV) device: The sunlight's energy is first converted to heat, which then causes the material to glow, emitting light that can, in turn, be converted to an electric current.

Metallic dielectric photonic crystal

This rendering shows the metallic dielectric photonic crystal that stores solar energy as heat. (Source: Jeffrey Chou)

Some members of the team worked on an earlier STPV device that took the form of hollow cavities, explains Chou, of MIT's Department of Mechanical Engineering, who is the paper's lead author. "They were empty, there was air inside," he says. "No one had tried putting a dielectric material inside, so we tried that and saw some interesting properties."

When harnessing solar energy, "you want to trap it and keep it there," Chou says; getting just the right spectrum of both absorption and emission is essential to efficient STPV performance.

Most of the sun's energy reaches us within a specific band of wavelengths, Chou explains, ranging from the ultraviolet through visible light and into the near-infrared. "It's a very specific window that you want to absorb in," he says. "We built this structure, and found that it had a very good absorption spectrum, just what we wanted."

In addition, the absorption characteristics can be controlled with great precision: The material is made from a collection of nanocavities, and "you can tune the absorption just by changing the size of the nanocavities," Chou says.

Another key characteristic of the new material, Chou says, is that it is well matched to existing manufacturing technology. "This is the first-ever device of this kind that can be fabricated with a method based on current ... techniques, which means it's able to be manufactured on silicon wafer scales," Chou says—up to 12in on a side. Earlier lab demonstrations of similar systems could only produce devices a few centimetres on a side with expensive metal substrates, so were not suitable for scaling up to commercial production, he says.


1 • 2 Next Page Last Page



Comment on "'Ideal' material absorbs full spectr..."
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top