Global Sources
EE Times-India
Stay in touch with EE Times India
 
EE Times-India > Manufacturing/Packaging
 
 
Manufacturing/Packaging  

Material may help usher in next-gen microelectronics

Posted: 16 Mar 2009     Print Version  Bookmark and Share

Keywords:electrical insulators  electron mobility  ferromagnetic semiconductor  magnetic coupling 

When squeezed, electrons increase their ability to move around. In compounds such as semiconductors and electrical insulators, such squeezing can dramatically change the electrical- and magnetic- properties.

Under ambient pressure, Europium oxide (EuO) becomes ferromagnetic only below 69 Kelvin, limiting its applications. However, its magnetic ordering temperature is known to increase with pressure, reaching 200 Kelvin when squeezed by 150,000 atmospheres. The relevant changes in electronic structure responsible for such dramatic changes, however, remained elusive.

Now scientists at the U.S. Department of Energy's Argonne National Laboratory have manipulated electron mobility and pinpointed the mechanism controlling the strength of magnetic interactions- and hence the material's magnetic ordering temperature.

"EuO is a ferromagnetic semiconductor and is a material that can carry spin polarised currents, which is an integral element of future devices aimed at manipulating both the spin and the charge of electrons in new generation microelectronics," Argonne's Postdoctoral researcher Narcizo Souza-Neto said.

Using powerful X-rays from the Advanced Photon Source to probe the material's electronic structure under pressure, Souza-Neto and Argonne Physicist Daniel Haskel say that localised, 100 per cent polarised Eu 4f electrons become mobile under pressure by hybridizing with neighbouring, extended electronic states. The increased mobility enhances the indirect magnetic coupling between Eu spins resulting in a three-fold increase in the ordering temperature.

While the need for large applied pressures may seem a burden for applications, large compressive strains can be generated at interfacial regions in EuO films by varying the mismatch in lattice parameter with selected substrates. By pinpointing the mechanism the research provides a road map for manipulating the ordering temperatures in this and related materials, e.g., through strain or chemical substitutions with the ultimate goal of reaching 300 Kelvin (room temperature).

"Manipulation of strain adds a new dimension to the design of novel devices based on injection, transport, and detection of high spin-polarised currents in magnetic/semiconductor hybrid structures", Haskel said.

Other authors in the paper are graduate student Yuan-Chieh Tseng (Northwestern U.) and Gerard Lapertot (CEA-Grenoble).

Funding for this research was provided by the U.S. Department of Energy's Office of Science.

Get Technical Papers and Application Notes on Power Design India!





Comment on "Material may help usher in next-gen ..."
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top