Global Sources
EE Times-India
Stay in touch with EE Times India
 
EE Times-India > Amplifiers/Converters
 
 
Amplifiers/Converters  

TPS6010x/TPS6011x charge pump

Posted: 01 May 2001     Print Version  Bookmark and Share

Keywords:power 

/ARTICLES/2001MAY/2001MAY01_AMD_POW_AN1.PDF

TPS6010x/TPS6011x Charge Pump August 1999 Mixed Signal Products Application Report SLVA070 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright ) 1999, Texas Instruments Incorporated iiiTPS601xx/TPS6011x Charge Pump Contents 1 Basic Operation of the Architecture Used 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Charge Pump as Voltage Doubler 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Regulated Charge Pumps in the TPS6010x/TPS6011x Family 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Push-Pull Mode (GND at pin COM) 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Single-Ended Mode (VIN at pin COM) 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Constant-Frequency Mode (GND at pin SKIP) 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Pulse-Skip Mode (VIN at pin SKIP) 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.5 3.3-V Mode (GND at pin 3V8) and 3.8-V Mode (VIN at pin 3V8) 4. . . . . . . . . . . . . . . . . . . . . . . . . 1.2.6 Synchronization (VIN at pin SYNC) 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 TPS6010x/TPS6011x Operation Modes 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Start-Up Behavior of the Devices With Full and Light Resistive Loads 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 TPS60100 Start-Up Behavior 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 TPS60101 Start-Up Behavior 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 TPS60110 Start-Up Behavior 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 TPS60111 Start-Up Behavior 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Start-Up Behavior Under Different Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Capacitive Loads in Parallel With Resistive Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Additional Inductive and Capacitive Loads 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Short-Circuit Protection 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Spectrum of the Different Modes Under Light and Full Load 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Push-Pull, Constant-Frequency, 3.3 V, and Using the Internal Oscillator 12. . . . . . . . . . . . . . . . . 2.4.2 Push-Pull, Pulse-Skip, 3.3 V, With Internal Oscillator 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Switching Between Modes 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Push-Pull Versus Single-Ended Mode 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Constant-Frequency Versus Pulse-Skip Mode 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Switching Between 3.3 V and 3.8 V Mode 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Capacitor Selection 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Capacitor Selection for Constant-Frequency Mode 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Capacitor Selection for Pulse-Skip Mode 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Description of the Evaluation Module and Layout Rules 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Description of the Evaluation Module (EVM) 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Schematic of the EVM 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Layout of the EVM 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Setup of the EVM 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Temperature Differences Between Unsoldered and Soldered PowerPADTM 20. . . . . . . . . . . . . . . . . . . . . . 4.2.1 Test Results for Unsoldered PowerPAD 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Test Results for Soldered PowerPAD 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Difference in Thermal Resistance With Unsoldered and Soldered PowerPAD 22. . . . . . . . . . . . 4.3 Layout Rules for Design 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application Examples 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Reduction of Spikes With an LC-Filter at the Output 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Output Behavior Without Filter 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Spike Behavior With Additional LC Filter at the Output 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Add LC Filter and Connect FB-Pin Behind Inductance 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Power Supply for a Low Power Digital Signal Processor (DSP) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Generating the 3.3 V Peripheral Voltage With the Charge Pump TPS60100 31. . . . . . . . . . . . . . 5.2.2 Generation of the Core Voltage for the TI C549/10 DSPs 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Voltage Regulator for Generation of the 1.8 V Core Voltage for the TI C5402/09/20 DSPs 32. 5.3 Two Devices in Parallel Double the Current 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figures iv SLVA070 5.4 Changing Output Voltage by Adding a Linear Regulator to the Output 36. . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Regulated Discharging of the Output Capacitor 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Discharging With an Open-Drain Buffer 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Discharging of the Output Capacitor(s) With an NMOS Transistor 41. . . . . . . . . . . . . . . . . . . . . . 6 Summary 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Figures 1 Basic Charge Pump Configured as a Voltage Doubler 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional Block Diagram, Charge Pumps TPS6010x/TPS6011x 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Evaluation Circuit for Start-Up Behavior 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 TPS60100: Start-Up With Full Load to 3.3 V 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TPS60100: Start-Up With Light Load to 3.3 V 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TPS60100: Start-Up With Full Load to 3.8 V 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 TPS60100: Start-Up With Light Load to 3.8 V 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TPS60101: Start-Up With Full Load to 3.3 V 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TPS60101: Start-Up With Light Load to 3.3 V 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 TPS60101: Start-Up With Full Load to 3.8 V 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TPS60101: Start-Up With Light Load to 3.8 V 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 TPS60110 Start-Up With Full Load to 5 V 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 TPS60110: Start-Up With Light Load to 5 V 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 TPS60111 Start-Up With Full Load to 5 V 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 TPS60111: Start-Up With Light Load to 5 V 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Load Circuit for Capacitive Loads in Parallel 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Start-Up of TPS60100 With the RC Network in Figure 16 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Start-Up of TPS60110 With the RC Network in Figure 16 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Load Circuit for RCL Loads 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Start-Up of TPS60100 With the RLC Network in Figure 19 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Start-Up of TPS60110 With the RLC Network in Figure 19 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 TPS60100: Spectrum for Full Load in Constant-Frequency Mode 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 TPS60100: Spectrum for Light Load in Constant-Frequency Mode 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TPS60100: Spectrum for Full Load in Pulse-Skip Mode 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TPS60100: Spectrum for Light Load in Pulse-Skip Mode 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 VOUT for TPS60100, Push-Pull to Single-Ended 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 VOUT for TPS60110, Push-Pull to Single-Ended 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 VOUT for TPS60100, Constant-Frequency to Pulse-Skip 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VOUT for TPS60110, Constant-Frequency to Pulse-Skip 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VOUT for TPS60100, 3.3 V to 3.8 V 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Schematic of the Evaluation Module (EVM) 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Placement of the Components and Vias (Black Dots) 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Top Layer of the EVM 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TPS60100: Spikes on the Output Voltage Without LC Filter 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 TPS60100: Spectrum of the Output Voltage Without LC Filter 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figures vTPS601xx/TPS6011x Charge Pump 36 TPS60110: Spikes on the Output Voltage Without LC Filter 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TPS60110: Spectrum of the Output Voltage Without LC Filter 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LC-Filter Used 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TPS60100: Spikes at the Output Voltage With Filter 1 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 TPS60100: Spectrum of the Output Voltage With Filter 1 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 TPS60100: Spikes at the Output Voltage With Filter 2 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 TPS60100: Spectrum of the Output Voltage With Filter 2 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 TPS60110: Spikes at the Output Voltage With Filter 1 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 TPS60110: Spectrum of the Output Voltage With Filter 1 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 TPS60100: Spikes at the Output Voltage With Filter 2 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TPS60110: Spectrum of the Output Voltage With Filter 2 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 TPS60100: Output Voltage After Load Jump With Filter 1 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 TPS60100: Output Voltage After Load Jump With Filter 2 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 TPS60110: Output Voltage After Load Jump With Filter 1 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 TPS60110: Output Voltage After Load Jump With Filter 2 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 TPS60100: Output Voltage After Load Jump With Filter 1 (FB behind L1) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TPS60100: Output Voltage After Load Jump With Filter 2 (FB behind L2) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 TPS60110: Output Voltage After Load Jump With Filter 1 (FB behind L1) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 TPS60110: Output Voltage After Load Jump With Filter 2 (FB behind L2) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Solution for 2.5-V Core 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Solution for 1.8-V Core 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 TPS76325 With External Circuitry 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Discrete 1.8-V LDO 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Two Devices in Parallel Double the Current 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 TPS6010x/TPS6011x With Low Dropout Regulator at the Output 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 TPS60100: Output Ripple Without LDO 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 TPS60100: Output Ripple With TPS7201 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 TPS60100: Output Ripple Without LDO 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 TPS60100: Output Ripple With TPS76301 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Block Diagram for Regulated Discharging With a Buffer 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 TPS60100: Discharge Current Without Load (buffer) 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 TPS60100: Discharge Current With 200-mA Load (buffer) 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 TPS60110: Discharge Current Without Load (buffer) 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 TPS60110: Discharge Current With 300-mA Load (buffer) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Block Diagram for Regulated Discharging WIth an NMOS Transistor 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TPS60100: Discharge Current Without Load (NMOS) 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 TPS60100: Discharge Current With 200-mA Load (NMOS) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 TPS60110: Discharge Current Without Load (NMOS) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 TPS60110: Discharge Current With 300-mA Load (NMOS) 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tables vi SLVA070 List of Tables 1 Capacitors Used for the Different Devices 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ripple Dependent on Input and Output Capacitors in Constant-Frequency Mode 16. . . . . . . . . . . . . . . . . . . . . . . . 3 Ripple Dependent on Input and Output Capacitors in Pulse-Skip Mode 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Selected Modes by Connecting the Jumpers 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Components of the EVM 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Temperature Test With TPS60100 With Unsoldered PowerPAD 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Temperature Test for TPS60110 With Unsoldered PowerPAD 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Temperature Test for TPS60100 With Soldered PowerPAD 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Temperature Test for TPS60110 With Unsoldered PowerPAD 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Resistances for TPS60100 and TPS60110 in Constant-Frequency Mode 23. . . . . . . . . . . . . . . . . . . . . . 11 Filter Values for the Two Test Filters (see Figure 38) 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Capacitor Values of Figure 59 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 TPS6010x/TPS6011x Charge Pump Brigitte Kormann ABSTRACT Charge pumps are dc/dc converters that use a capacitor instead of an inductor or transformer for energy storage. They are able to generate positive or negative voltages from the input voltage. The input voltage can be multiplied by some factor such as 0.5, 2, 3, and so on, to generate the output voltage desired. Often, charge pumps and all related parts (including those used for energy storage) are integrated in some other circuits, such as some PLL devices where a negative voltage is required. Integrated charge pumps can only supply a small amount of current due to the limitation in the size of integrated capacitors. If more current is needed, a dc/dc converter is required with sufficient energy storage capacity to handle this higher current. This requires the use of some external components. Most charge pumps have had the disadvantage of having an unregulated output voltage that was simply the input voltage multiplied by some factor. The first TITM charge pump family, the TPS6010x/TPS6011x, is a family of regulated charge pumps with different output voltages and different output current versions up to 300 mA. Only four external components are necessary to generate this high current. The TPS6010x parts have a regulated output voltage of 3.3V, and the TPS6011x devices provide 5 V. The output voltage is very precise due to special circuit design and shows only a very small ripple. This application report is a detailed description of the use of TI's TPS6010x andTPS6011x charge pump devices. It includes the basic operation of the charge pumps, a detailed description of the features of the TPS6010x/TPS6011x devices, the requirements and best choice of external components, the recommended layout, and some design examples. 1 Basic Operation of the Architecture Used The charge pumps used in TI's family of TPS6010x/TPS6011x double the input voltage but, because the input voltage can have a wide range of variation, the output voltage is regulated. This section first describes the basic function of a charge pump doubling the input voltage; it then shows the specific integrated charge pumps and their regulation circuits. 1.1 Charge Pump as Voltage Doubler Figure 1 shows the principle of a charge pump doubling the input voltage. TI is a trademark of Texas Instruments Incorporated. Basic Operation of the Architecture Used 2 SLVA070A VDD S1 S2 1 CF S3 S4 COUT VOUT VDD S1 S2 1 CF S3 S4 COUT VOUT Charging Phase Transfer Phase Figure 1. Basic Charge Pump Configured as a Voltage Doubler The oscillator runs at a 50% duty cycle and regulates the turning on and off of the four switches. During the first half of the oscillator frequency period (charging phase), switches S2 and S3 are closed, and switches S1 and S4 are opened. The flying capacitor (CF) is charged (ideally up to VDD). During the second half (transfer phase) switches S2 and S3 are opened, and switches S1 and S4 are closed. Capacitor CF is discharged and charges the output capacitor (COUT). The voltage at this moment at node 1 is ideally: V1 = VDD + VCF 2 W VDD. Therefore, the output capacitor (COUT) will ideally be charged up to 2 W VDD after reaching the steady state. The real voltage at COUT will be a little less than 2 W VDD because of losses in the switches and charging losses in capacitor CF. So the output voltage for this configuration only depends on the input voltage and on the losses in the switches and in the capacitor CF. 1.2 Regulated Charge Pumps in the TPS6010x/TPS6011x Family The two charge pumps in the TPS6010x/TPS6011x family are basically working as voltage doublers with a regulated output voltage. The TPS6010x devices have an output voltage of 3.3 V 14% over the whole input-voltage range, and the TPS6011x devices have an output voltage of 5V 14% over the whole input-voltage range. Figure 2 shows the functional block diagram of the TPS6010x/TPS6011x family. Two separate charge pumps are integrated to get a very small ripple at the output. All the other blocks are required to control the different modes and to regulate the output voltage. The different modes are shown in Sections 1.2.1 through 1.2.6. Refer to the data sheets for a more detailed description. Basic Operation of the Architecture Used 3TPS6010x/TPS6011x Charge Pump OscillatorCLK (only TPS6011x) 00 1800 Control Circuit SKIP COM 3V8 (only TPS6010x) SYNC Shutdown/ Start-up ControlENABLE _ + T11 T13 T12 T14 C1F Charge Pump 1 IN OUT PGND C1- C1+ + -VREF FB _ + + - 0.8 * VIN T21 T23 T22 T24 C2F Charge Pump 2 IN OUT PGND C2- C2+ GND Figure 2. Functional Block Diagram, TPS6010x/TPS6011x Charge Pumps At start-up, when all capacitors are discharged, the shutdown/start-up control circuit starts charging the output capacitor (COUT) up to 0.8 W VIN to reduce the start-up time and to eliminate the need for a Schottky diode between IN and OUT. Therefore, during shutdown the input and output are disconnected. The advantage with very light loads like the MSP430 is that the charge pump can be disabled and the load can be supplied by the output capacitor during this time. The quiescent current can be reduced with this operation mode. The control circuit controls the different modes of the device. All the possible modes and their use under different requirements are described in the following sections. Basic Operation of the Architecture Used 4 SLVA070A 1.2.1 Push-Pull Mode (GND at pin COM) The two charge pumps work in push-pull mode for minimum ripple, that is, in each half of an oscillator cycle one of the charge pumps is charging the respective flying capacitor (CFx), and the other one is charging the output capacitor (COUT). Therefore, the two charge pumps operate with a phase shift of 1800. 1.2.2 Single-Ended Mode (VIN at pin COM) If output ripple is not too critical, the device can work without phase shift between the two charge pumps, and the number of external components can be reduced by one flying capacitor. 1.2.3 Constant-Frequency Mode (GND at pin SKIP) In constant-frequency mode, the ripple at the output is minimized because the output capacitor (COUT) is charged during each oscillator cycle. The unwanted output power has to be dissipated in the device. This decreases the efficiency for light loads in comparison to pulse-skip mode. The advantage is the defined spectrum. 1.2.4 Pulse-Skip Mode (VIN at pin SKIP) The device can also run in pulse-skip mode for optimized efficiency at light loads. In this mode, the charging of the output capacitor takes place only if the output voltage drops below a defined threshold. The efficiency for light loads increases, but the output ripple is higher than in push-pull mode. 1.2.5 3.3-V Mode (GND at pin 3V8) and 3.8-V Mode (VIN at pin 3V8) In comparison with the TPS6011x, the TPS6010x provides one additional mode: the 3.8-V mode. Although it is possible to minimize the output ripple with the combination of push-pull and constant-frequency modes, the reduction might not be enough. Additionally, the output of the TPS6010x may be too far from where the power is needed, and this long distance can cause EMI problems on the power pin of the supplied device. To improve the described behavior, the additional 3.8-V mode is implemented. In this mode, the regulated output voltage is increased to 3.8 V. A linear voltage regulator can then be connected with the output of the charge pump to smooth the output voltage. The efficiency of this solution is nearly the same as with the charge pump alone because the TPS6010x is doubling the input voltage and dissipating the unwanted power. 1.2.6 Synchronization (VIN at pin SYNC) It is also possible to synchronize the device externally with a frequency below 800 kHz. The input at the SYNC pin has to be a high signal, and the frequency signal has to be connected to pin 3V8 in the TPS6010x, or to CLK in the TPS6011x. The charge pumps operate now at half the external frequency. The only requirements on the external signal source are a duty cycle between 20% and 80%, and the proper signal levels. TPS6010x/TPS6011x Operation Modes 5TPS6010x/TPS6011x Charge Pump 2 TPS6010x/TPS6011x Operation Modes The TPS6010x/TPS6011x family of charge pumps from Texas Instruments includes different modes to optimize the device for specific applications. This section describes the functionality of the devices at start-up and normal operation. The behavior of the output is dependent on the layout, and on the external capacitors. The measurements in this section are taken on the layout recommended in the data sheet. Table 1 shows the values of the capacitors used during the measurements. For different capacitors please refer to Section 3. All measurements in this section are made at room temperature. Table 1. Capacitors Used for the Different Devices LOCATION TPS60100 TPS60101 TPS60110 TPS60111 Input (IN) capacitors Sprague 10 5F/10 V, Taiyo Yuden 1 5F/16 V Sprague 10 5F/10 V, Taiyo Yuden 1 5F/16 V Sprague 15 5F/10 V, Taiyo Yuden 1 5F/16 V Sprague 15 5F/10 V, Taiyo Yuden 1 5F/16 V Output (OUT) capacitors Sprague 22 5F/20 V, Taiyo Yuden 1 5F/16 V Sprague 22 5F/20 V, Taiyo Yuden 1 5F/16 V Sprague 33 5F/20 V, Taiyo Yuden 1 5F/16 V Sprague 33 5F/20 V, Taiyo Yuden 1 5F/16 V Flying capacitors (CxF) Taiyo Yuden 2.2 5F/16 V Taiyo Yuden 2.2 5F/16 V Taiyo Yuden 2.2 5F/16 V Taiyo Yuden 2.2 5F/16 V 2.1 Start-Up Behavior of the Devices With Full and Light Resistive Loads The most important part of the start-up behavior is the charging of the output capacitors (COUT), which is nearly independent of the different modes. Only the start-up behavior for push-pull, constant-frequency modes operating with the internal oscillator is shown. RL TPS601xx IN 1 OUT GND ENABLE IN 0 OUT Figure 3. Evaluation Circuit for Start-Up Behavior During the measurements, the supply voltage (VIN) is constantly applied (2.4 V for TPS6010x, and 3 V for TPS6011x). The device is enabled and driven into start-up by applying the supply voltage to the ENABLE pin. The output capacitors (COUT) are discharged. The diagrams also show the minimum duration for the ENABLE signal to get a stable output voltage. All measurements in this section use a resistive load. The start-up behavior with capacitive and/or inductive loads is discussed in Section 2.2. TPS6010x/TPS6011x Operation Modes 6 SLVA070A 2.1.1 TPS60100 Start-Up Behavior For the TPS60100, a 16.5- resistor is used for full load, and a 330- resistor is used for light load. After start-up, these resistive loads handle a 200-mA current for full load, and 10 mA for light load. Figures 4 through 7 show that the output voltage is stable after the latest 500 5s under these conditions. t / 5s -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -100 0 100 200 300 400 500 600 VENABLE VOUT t / 5s -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -100 0 100 200 300 400 500 600 Figure 4. TPS60100: Start-Up With Full Load to 3.3 V Figure 5. TPS60100: Start-Up With Light Load to 3.3 V OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -100 0 100 200 300 400 500 600 VENABLE VOUT -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -100 0 100 200 300 400 500 600 VENABLE VOUT Figure 6. TPS60100: Start-Up With Full Load to 3.8 V Figure 7. TPS60100: Start-Up With Light Load to 3.8 V t / 5st / 5s OUTV,V/VENABLE OUTV,V/VENABLE TPS6010x/TPS6011x Operation Modes 7TPS6010x/TPS6011x Charge Pump 2.1.2 TPS60101 Start-Up Behavior For the TPS60101, a 33- resistor is used for full load, and 330 for light load. After start-up, these resistive loads handle a current of 100 mA for full load, and 10 mA for light load. Figures 8 through 11 show that the output voltage is stable after the latest 450 5s under these conditions. -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -100 0 100 200 300 400 500 VENABLE VOUT -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -100 0 100 200 300 400 500 t / 5st / 5s Figure 8. TPS60101: Start-Up With Full Load to 3.3 V Figure 9. TPS60101: Start-Up With Light Load to 3.3 V OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -100 0 100 200 300 400 500 Figure 10. TPS60101: Start-Up With Full Load to 3.8 V Figure 11. TPS60101: Start-Up With Light Load to 3.8 V -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -100 0 100 200 300 400 500 t / 5st / 5s OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT VENABLE VOUT TPS6010x/TPS6011x Operation Modes 8 SLVA070A 2.1.3 TPS60110 Start-Up Behavior For the TPS60110, a 16.7- resistor is used for full load, and a 500- resistor for light load. After start-up, these resistive loads handle a current of 300 mA for full load, and 10 mA for light load. Figure 12 shows that the output voltage is stable after the latest 900 5s with full load, at room temperature, and with an input voltage (VIN) of 3 V. -1 0 1 2 3 4 5 6 -200 0 200 400 600 800 1000 t / 5st / 5s Figure 12. TPS60110: Start-Up With Full Load to 5 V Figure 13. TPS60110: Start-Up With Light Load to 5 V -1 0 1 2 3 4 5 6 -200 0 200 400 600 800 1000 OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT VENABLE VOUT 2.1.4 TPS60111 Start-Up Behavior For the TPS60111, a 33.3- resistor is used for full load, and a 500- resistor is used for light load. After start-up, these resistive loads handle a current of 150 mA for full load, and 10 mA for light load. Figure 14 shows that the output voltage is stable after the latest 750 5s. TPS6010x/TPS6011x Operation Modes 9TPS6010x/TPS6011x Charge Pump -1 0 1 2 3 4 5 6 -200 0 200 400 600 800 t / 5st / 5s Figure 14. TPS60111: Start-Up With Full Load to 5 V Figure 15. TPS60111: Start-Up With Light Load to 5 V -1 0 1 2 3 4 5 6 -200 0 200 400 600 800 OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT VENABLE VOUT Figures 4 through 15 show that first the start-up circuit controls the operation until the output voltage (VOUT) reaches 0.8 W VIN. During this time period the device limits the supply current to charge the output capacitors. This means that with increasing output voltage the supply current increases nonlinearly. When VOUT = 0.8 W VIN is exceeded, the device switches to standard operation as defined by the different mode inputs, that is, the flying capacitors charge the output capacitor. The previous measurements show that a maximum of 1 ms after applying the ENABLE signal, the output voltage becomes stable at room temperature for the given input voltage. 2.2 Start-Up Behavior Under Different Loads Section 2.1 describes the start-up behavior for resistive loads only. In real applications the loads are generally not simply resistive. Block capacitors, filter inductors, processors, or other load combinations can be found. This section covers the behavior of the TPS6010x/TPS6011x for some combinations of capacitive, resistive, and inductive loads. The input voltage for the TPS6010x is 2.4 V, and 3 V for the TPS6011x. 2.2.1 Capacitive Loads in Parallel With Resistive Loads Figures 17 and 18 show the start-up behavior of TPS60100 and TPS60110 with full load (resistive, TPS60100: 16.5 , TPS60110: 16.7 ) plus an additional capacitor of 100 5F in parallel. TPS6010x/TPS6011x Operation Modes 10 SLVA070A R Full load C 100 5F Figure 16. Load Circuit for Capacitive Loads in Parallel -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -1 0 1 2 3 4 5 6 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 t / mst / ms Figure 17. Start-Up of TPS60100 With the RC Network in Figure 16 Figure 18. Start-Up of TPS60110 With the RC Network in Figure 16 OUTV,V/VENABLE OUTV,V/VENABLE VENABLE VOUT VENABLE VOUT In the case of resistive plus capacitive loads, the behavior of the device is similar to the pure resistive load. The start-up circuitry of the device controls the operation until VOUT > 0.8 W VIN. Afterwards the device switches to standard functionality and charges the output capacitors with the flying capacitors. Increasing the value of the capacitive load increases the duration until the output voltage is stable. 2.2.2 Additional Inductive and Capacitive Loads Figures 20 and 21 show the start-up behavior of TPS60100 and TPS60110 with the load circuitry shown in Figure 19. The resistor represents full load for the devices (TPS60100: 16.5 , TPS60110: 16.7 ). TPS6010x/TPS6011x Operation Modes 11TPS6010x/TPS6011x Charge Pump R Full load C 100 5F L 10 5H Figure 19. Load Circuit for RLC Loads -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 t / mst / ms Figure 20. Start-Up of TPS60100 With the RLC Network in Figure 19 Figure 21. Start-Up of TPS60110 With the RLC Network in Figure 19 -1 0 1 2 3 4 5 6 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 OUTV,V/VENABLE OUTV,V/VENABLEVENABLE VOUT VENABLE VOUT For resistive plus capacitive and inductive loads, the device behaves similar to a resistive load. The device is controlled by the start-up circuitry until VOUT > 0.8 W VIN. Afterwards the device charges the output capacitors in standard operation mode. 2.3 Short-Circuit Protection The devices are short-circuit, but not overload protected. The current is limited during a hard output short-circuit (VOUT = 0 V). For the TPS6010x, the output short-circuit current is typically 125 mA; this current is typically 150 mA for the TPS6011x. This is due to the structure of the device. During start-up, the device is working like a fold-back circuit; that is, when the output voltage increases, the output current increases faster than linearly. For a hard short-circuit, the output voltage is zero and the device is in the start-up behavior (VOUT<




Comment on "TPS6010x/TPS6011x charge pump"
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top